Finding the Cartesian equation of a line in the complex plane

Question

Find the Cartesian form in the complex plane for the following equations, given z \in \textbb{C},
(a) |z + 2| = |z - i|
(b) |z + 2| = |2z - i|


Answer

Note that the Cartesian form of a complex number z is z = x + iy, where i is called an \textbf{imaginary number}, and i^{2} = - 1, and the absolute |z|, also called the modulus of z, is defined as |z| = \sqrt{x^{2} + y^{2}}. Thus solutions to the above problems are as follows


(a) |z + 2| = |z - i|, z \in \textbb{C}:

Let z = x + iy, substituting z in |z + 2| = |z - i|, we get

  \renewcommand{\arraystretch}{1.5} \textsf{ \begin{tabular}{l r c l} & $|x + iy + 2)|$ &= &$|x + iy - i|$\\ & $|(x + 2) + iy|$ &= &$|x + i(y - 1)|$\\ & $\sqrt{(x + 2)^{2} + y^{2}}$ &= & $\sqrt{x^{2} + (y - 1)^{2}}$ \\ & $(x + 2)^{2} + y^{2}$ &= & $x^{2} + (y - 1)^{2}$ \\ &$x^2 + 4x + 4 + y^2$ &= & $x^2 + y^2 - 2y + 1$ \\ \therefore &$2y$ & = & $ - 4x - 3$ \\ \end{tabular} }

  \textsf{ \implies \boxed{y =  - 2x - \frac{3}{2}} }

This is the Cartesian equation of a straight line with a gradient of -2 and a y-intercept of -\frac{3}{2} (see Figure 1)

Cartesian form of the straight line |z+2|=|z-i|, where z is a complex number.

Figure 1


(b) |z + 2| = |2z - i|, z \in \textbb{C}:

Let z = x + iy, substituting z in |z + 2| = |2z - i|, we get

  \renewcommand{\arraystretch}{1.5} \textsf{ \begin{tabular}{l r c l} & $|z + 2|$ &= &$|2z - i|$\\ & $|(x + 2) + iy|$ &= &$|2x + i2y - i|$\\ & $|(x + 2) + iy|$ &= &$|2x + i(2y - 1)|$\\ & $\sqrt{(x + 2)^{2} + y^{2}}$ &= & $\sqrt{(2x)^{2} + (2y - 1)^{2}}$ \\ & $(x + 2)^{2} + y^{2}$ &= & $4x^{2} + (2y - 1)^{2}$ \\ &$x^2 + 4x + 4 + y^2$ &= & $4x^2 + 4y^2 - 4y + 1$ \\ \therefore &$3y^{2} - 4y$ & = & $- 3x^{2} + 4x + 3$ \\ \therefore &$y^{2} - \frac{4}{3}y$ & = & $- x^{2} + \frac{4}{3}x + 1$ \\ \end{tabular} }

Completing the square gives
  \renewcommand{\arraystretch}{1.5} \textsf{ \begin{tabular}{l r c l} &$y^{2} - 2\left(\frac{2}{3}\right)y + \frac{4}{9} - \frac{4}{9}$ & = & $- \left(x^{2} - 2\left(\frac{2}{3}\right)x + \frac{4}{9} - \frac{4}{9}\right) + 1$ \\ &$\left(y - \frac{2}{3}\right)^{2} - \frac{4}{9}$ & = & $- \left((x - \frac{2}{3})^{2} - \frac{4}{9}\right) + 1$ \\ \therefore &$\left(y - \frac{2}{3}\right)^{2} + (x - \frac{2}{3})^{2} & = & $+ \frac{4}{9} + \frac{4}{9}$ + 1$  \end{tabular} }

  \textsf{ \implies \boxed{\left(y - \frac{2}{3}\right)^{2} + \left(x - \frac{2}{3}\right)^{2} & = &  \frac{17}{9}} }

This is the Cartesian equation of a circle with the center at \left(\frac{2}{3},\frac{2}{3}\right) and a radius of \frac{\sqrt{17}}{3} (see Figure 2)

Figure 2