mathematics topic

Quadratic Equations

Deriving solution formulas for a quadratic equation

Quadratic equations are equations of the form

 \texrm{(1)}\hspace{50px}\displaystyle{ax^2 + bx + c = 0}, \qquad \qquad where \qquad $a \neq 0$.

As a \neq 0, we can divide both the left hand side (LHS) and the right hand side (RHS) of the equation by a, which then gives

 \texrm{(2)}\hspace{50px}\displaystyle{x^2 + \frac{b}{a}x + \frac{c}{a} = 0}

Modifying the LHS by multiplying term 2 with \frac{2}{2}, and then adding and subtracting the LHS by \frac{b^2}{(2a)^{2}}, we have

 \texrm{(3)}\hspace{50px}\displaystyle{x^2 + 2\frac{b}{2a} + \frac{b^2}{(2a)^2} - \frac{b^2}{(2a)^2} - \frac{c}{a} = 0}

Note that Eq. (3) is actually the same as Eq. (2).

Utilizing the algebraic identity (u+v)^2 = u^2 + 2uv + v^2 for the first three terms and making (2a)^2 a common denominator for the last two terms of the LHS, Eq. (3) becomes:

 \texrm{(4a)}\hspace{43px}\displaystyle{\left(x+\frac{b}{2a}\right)^2 - \left(\frac{b^2 + 4ac}{(2a)^2}\right) = 0}

or

 \texrm{(4b)}\hspace{43px}\displaystyle{\left(x+\frac{b}{2a}\right)^2 - \left(\frac{\sqrt{b^2 + 4ac}}{2a}\right)^2 = 0}

Utilizing the algebraic identity u^2 - v^2 = (u - v)(u + v) Eq. (4b) becomes:

 \texrm{(5)}\hspace{50px}\displaystyle{\left(\left(x+\frac{b}{2a}\right) - \frac{\sqrt{b^2 + 4ac}}{2a}\right)\left(\left(x+\frac{b}{2a}\right) + \frac{\sqrt{b^2 + 4ac}}{2a}\right)  = 0}

For Eq. (5) to be valid, either \left(x+\frac{b}{2a} - \frac{\sqrt{b^2 + 4ac}}{2a}\right) or \left(x+\frac{b}{2a} + \frac{\sqrt{b^2 + 4ac}}{2a}\right) must be equal to 0, therefore, the solutions of the quadratic equation are:

Solution #1:
From

 \displaystyle{ x+\frac{b}{2a} - \frac{\sqrt{b^2 + 4ac}}{2a} = 0 }

we have

 \displaystyle{ x_{1} = - \frac{b}{2a} + \frac{\sqrt{b^2 + 4ac}}{2a}}

or

 \displaystyle{ x_{1} = {\frac{- b + \sqrt{b^2 + 4ac}}{2a}}

Solution #2:
From

 \displaystyle{ x+\frac{b}{2a} + \frac{\sqrt{b^2 + 4ac}}{2a} = 0 }

we have

 \displaystyle{ x_{2} = {\frac{- b - \sqrt{b^2 + 4ac}}{2a}}


In summary, solutions of a quadratic equation

 \displaystyle{ax^2 + bx + c = 0}, \qquad \qquad $a \neq 0$.

are:

 \displaystyle{ x = {\frac{- b \pm \sqrt{\Delta}}{2a}}

where \Delta = b^2 - 4ac